写在半导体边缘

作者:南郭比特 / 公众号:ngbit-q 发布时间:2018-12-23

写在半导体边缘
前言
1制造为王
2冠上明珠
3生命之光
4绝代无双
5奔腾的芯
6群峰之巅
7应用时代
8刀锋之上
全文最新版的pdf格式链接如下,建议下载阅读。
https://pan.baidu.com/s/1HS2LBi5puDbxMb-ExBREvA
参考文献
[1]Wisniak J. Jöns Jacob Berzelius. A Guide to the Perplexed Chemist [J]. Chemical Educator, 2000, 5(6):343-350.
[2]Khan A I. Pre-1900 Semiconductor Research and Semiconductor Device Applications [C]// 2004.
[3]Łukasiak L, Jakubowski A. History of Semiconductors [J]. Journal of Telecommunications & Information Technology, 2010, 1:3-9.
[4]Wilson A H. The Theory of Electronic Semi-Conductors. II [J]. Butsuri, 1931, 5(4):575-584.
[5]Lillian Hoddeson. Research on crystal rectifiers during World War II and the invention of the transistor [J]. History & Technology, 1994, 11(2):121-130.
[6]Riordan M, Hoddeson L.The origins of the pn junction[J]. IEEE Spectrum, 2002, 34(6):46-51.
[7]Brinkman W F, Haggan D E, Troutman W W. A history of the invention of the transistor and where it will lead us [J]. IEEE Journal of Solid-State Circuits, 1997, 32(12):1858-1865.
[8]Bordo M D, Schwartz A J. What has foreign exchange market intervention since the Plaza Agreement accomplished? [J]. Open Economies Review, 1991, 2(1):39-64.
[9]傅如荣.工研院电子所模式和台湾半导体工业的发展[J].亚太经济, 2009(1):104-107.
[10]董安琪.全球化下台湾的产业发展与产业政策[EB/OL].中研院经济所, 2011(11).http://www.econ.sinica.edu.tw/mobile/webtools/thumbnail/download/2013090215153345654/?fd=Conferences_NFlies&Pname=1129_1.pdf
[11]Neal Templin et al., Sudden Death of Junkins Stuns Texas Instruments [EB/OL].https://www.wsj.com/articles/SB83338180579201500
[12]Jain K, Willson C G, Lin B J. Ultrafast deep UV Lithography with excimer lasers [J]. IEEE Electron Device Letters, 2016, 3(3):53-55.
[13]Ito H, Willson C G. Chemical amplification in the design of dry developing resist materials [J]. Polymer Engineering & Science, 1983, 23(18):1012–1018.
[14]Aroyo M I, Müller U, Wondratschek H. Historical introduction,International Tables for Crystallography [M]. 2011.
[15]黄昆.固体物理学:重排本[M].北京大学出版社, 2014.
[16]Binnig G, Rohrer H, Gerber C, et al. Surface Studies by Scanning Tunneling Microscopy [M]// Van Nostrand's Encyclopedia of Chemistry. John Wiley & Sons, Inc. 1982:2793-6.
[17]Binnig G, Quate CF, Gerber C. Atomic force microscope [J]. Oyobuturi, 2018, 56(9):930-933.
[18]Rutherford E. 4 – The Scattering of α and β Particles by Matter and the Structure of the Atom[M]// The Old Quantum Theory. 2008:273–282.
[19]Phil N B. On the Constitution of Atoms and Molecules. Part I. Philosophical Magazine [J], 1913, 26 (151): 1–24.
[20]Phil N B. On the Constitution of Atoms and Molecules. Part II Systems Containing Only a Single Nucleus [J]. Philosophical Magazine,1913, 26 (153): 476–502.
[21]Phil N B. On the Constitution of Atoms and Molecules. Part III. Systems containing Several Nuclei [J]. Philosophical Magazine, 1913, 26(151):1-25.
[22]Mehra J, Rechenberg H. The Historical Development of Quantum Theory [M]. Springer-Verlag, 1982.
[23]周公度,段连运.结构化学基础(第五版) [M].北京大学出版社, 2017.
[24]刘恩科,朱秉升,罗晋生.半导体物理学.第7版[M].电子工业出版社, 2011.
[25]Calais J L. Density‐functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. IX + 333 pp. Price £45.00 [J]. International Journal of Quantum Chemistry, 1993, 47(1):431-9.
[26]Slater J C. A Generalized Self-Consistent Field Method [J]. Physical Review, 1953, 91(3):528-530.
[27]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys Rev, 1965, 140(4A):A1133--A1138.
[28]蒋鸿.固体绝对能带位置的第一性原理计算:现状与挑战[C]//中国化学会学术年会第13分会场. 2012.
[29]Einstein A. On a heuristic point of view concerning the production and transformation of light [J]. Annalen Der Physik, 1905.
[30]Goetzberger A, Hebling C. Photovoltaic materials, past, present, future [J]. Solar Energy Materials & Solar Cells, 2000, 62(1):1-19.
[31]H. Hertz. On an effect of Ultraviolet light on the Electric discharge [J].
[32]Millikan R A. A Direct Photoelectric Determination of Planck's "h" [J]. Phys Rev, 1916, 7(3):355-388.
[33]Chapin D M, Fuller C S, Pearson G L. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power [J]. Journal of Applied Physics, 1954, 25(5):676-677.
[34]Shockley W, Queisser H J. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells [J]. Journal of Applied Physics, 2004, 32(3):510-519.
[35]Polman A, Knight M, Garnett E C, et al. Photovoltaic materials: Present efficiencies and future challenges [J]. Science, 2016, 352(6283):aad4424.
[36]Lumb M P, Mack S, Schmieder K J, et al. GaSb‐Based Solar Cells for Full Solar Spectrum Energy Harvesting [J]. Advanced Energy Materials, 2017, 7(20):1700345.
[37]周炳琨.激光原理-第7版[M].国防工业出版社, 2014.
[38]Krokhin O N. The first laser was created 50 years ago [J]. Herald of the Russian Academy of Sciences, 2010, 80(5):447-454.
[39]Bloembergen N. Laser: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War [J]. Physics Today, 2001, 54(9):56-56.
[40]Gordon J P, Zeiger H J, Townes C H. The Maser-New Type of Microwave Amplifier, Frequency Standard, and Spectrometer [J]. Physical Review, 1955, 99(4):1264-1274.
[41]Schawlow A L, Townes C H. Infrared and Optical Masers [J]. Naval Engineers Journal, 1961, 73(1):45–50.
[42]Hecht J. Beam: The Race to Make the Laser [J]. American Journal of Physics, 2005, 74(74):87-87.
[43]赤崎勇.蓝光之魅[M].学林出版社, 2016.
[44]中村修二.我生命里的光[M].四川文艺出版社. 2016.
[45]Nakamura S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes [J]. Science, 1998, 281(5379):956-961.
[46]Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics [J]. Physical Review Letters, 1987, 58(20):2059.
[47]J. E. Lilienfeld. Method and apparatus for controlling electric current. US patent 1,745,175 [P].1925.
[48]Guarnieri M. Trailblazers in Solid-State Electronics [Historical] [J]. IEEE Industrial Electronics Magazine, 2011, 5(4):46-47.
[49]Lee De Forest. Oscillation-responsive device. US Patent 824,637[P]. 1906.
[50]Gustafson J. Reconstruction of the Atanasoff-Berry computer [C]// Computers. 2000:91-106.
[51]Mccartney S. Eniac: The Triumphs and Tragedies of the World's First Computer [M]. Berkley Publishing Group, 2001.
[52]J. Nishizawa, T. Terasaki, J. Shibata. Field-effect transistor versus analog transistor (static induction transistor) [J]. IEEE Transactions on Electron Devices, 1975, 22(4):185-197.
[53]Brews J R. Physics of the MOS Transistor [J]. Silicon Integrated Circuits, 1981:1-120.
[54]Markov I V. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy [M]. WORLD SCIENTIFIC, 1995.
[55]Kucher P. The world's first 300 mm fab at Infineon - challenges and success [C]// International Symposium on Semiconductor Manufacturing, 2000. Proceedings of Issm. IEEE, 2002:39-43.
[56]TI. The Chip that Jack Built [EB/OL].http://www.ti.com/corp/docs/kilbyctr/jackbuilt.shtml.
[57]Noyce R N. Semiconductor device-and-lead structure: US, US 2981877 A [P]. 1961.
[58]Dennard R H. Field-effect transistor memory: US, US 3387286 [P]. 1968.
[59]Fujio Masuoka,Hisakazu Iizuka. Semiconductor memory device and method for manufacturing thesame. US4531203A [P]. 1980.
[60]Secret of Intel's name revealed [EB/OL].https://www.theinquirer.net/inquirer/news/1031210/secret-intel-revealed
[61]Ramish Zafar. Apple’s A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU[EB/OL].https://wccftech.com/apple-a12x-10-billion-transistors-performance
[62]Seeking Alpha. NVIDIA: A Snapshot Of Competitive AI Hardware [EB/OL]. https://seekingalpha.com/instablog/243082-grxbstrd/5217201-nvidia-snapshot-competitive-ai-hardware
[63]Takagi S. Strained-Si CMOS Technology [M]// Advanced Gate Stacks for High-Mobility Semiconductors. Springer Berlin Heidelberg, 2007:1-19.
[64]Yang H S, Malik R, Narasimha S, et al. Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing [C]// Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. IEEE, 2004:1075-1077.
[65]Gallon C, Reimbold G, Ghibaudo G, et al. Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress [J]. IEEE Electron Devices, 2004, 51(8):1254-1261.
[66]Lo S H, Buchanan D A, Taur Y, et al. Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's [J]. IEEE Trans Electron Device Lett, 1997, 18(5):209-211.
[67]Cao M, Vande Voorde P, Cox M, et al. Boron diffusion and penetration in ultrathin oxide with poly-Si gate [J]. IEEE Electron Device Letters, 1998, 19(8):291-293.
[68]Frank M M, Kim S B, Brown S L, et al. Scaling the MOSFET gate dielectric: From high- k, to higher- k? (Invited Paper) [J]. Microelectronic Engineering, 2009, 86(7):1603-1608.
[69]Neamen D A . Semiconductor Physics And Devices: Basic Principles, Fourth Edition[M]// Semiconductor physics and devices :.电子工业出版社, 2018.
[70]Nagoga M, Okhonin S, Fazan P. Studying of hot-carrier effect in floating body SOI MOSFETs by the transient charge pumping technique [M]. Elsevier Science Ltd. 2004.
[71]Young K K. Short-channel effect in fully depleted SOI MOSFETs [J]. IEEE Transactions on Electron Devices, 1989, 36(2):399-402.
[72]Troutman R R. VLSI limitations from drain-induced barrier lowering [J]. Solid-State Circuits, IEEE Journal of, 1979, 14(2):383-391.
[73]Yeap, G.C.F, Krishnan, S, Ming-Ren Lin. Fringing-induced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-K gate dielectrics [J]. Electronics Letters, 1998, 34(11):1150-1152.
[74]Yeo Y C, Lu Q, Ranade P, et al. Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric [J]. IEEE Electron Device Letters, 2001, 22(5):227-229.
[75]Yeo Y C, King T J, Hu C. Metal-dielectric band alignment and its implications for metal gate complementary metal-oxide-semiconductor technology [J]. Journal of Applied Physics, 2002, 92(12):7266-7271.
[76]Robertson J. Band offsets of wide-band-gap oxides and implications for future electronic devices [J]. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 2000, 18(3):1785-1791.
[77]Bohr M T, Chau R S, Ghani T, et al. The High-k Solution [J]. Spectrum IEEE, 2007, 44(10):29-35.
[78]Maiti B, Tobin P J. Metal gates for advanced CMOS technology [J]. Proceedings of SPIE - The International Society for Optical Engineering, 1999.
[79]Lee J, Park H, Choi H, et al. Modulation of TiSiN effective work function using high-pressure postmetallization annealing in dilute oxygen ambient [J]. Applied Physics Letters, 2008, 92(26):043508.
[80]Mistry K, Allen C, Auth C, et al. A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging [C]// Electron Devices Meeting, 2007. IEDM 2007. IEEE International. IEEE, 2008:247-250.
[81]Hudait M K, Dewey G, Datta S, et al. Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (≤ 2 μm) composite buffer architecture for high-speed and lowvoltage (0.5 V) logic applications [J]. 2007:625-628.
[82]Radosavljevic M, Chu-Kung B, Corcoran S, et al. Advanced high-K gate dielectric for high-performance short-channel In 0.7 Ga 0.3 As quantum well field effect transistors on silicon substrate for low power logic applications [C]// Electron Devices Meeting. IEEE, 2009:1-4.
[83]Bohr M. The evolution of scaling from the homogeneous era to the heterogeneous era [C]// Electron Devices Meeting. IEEE, 2011:1.1.1-1.1.6.
[84]Rick Merritt. Intel's 10nm Secrets Predicted Quantum well FETs, germanium, InGaAs in mix [EB/OL]. https://www.eetimes.com/document.asp?doc_id=1326410
[85]Hisamoto D, Kaga T, Takeda E. Impact of the vertical SOI `DELTA' structure on planar device technology [J]. IEEE Transactions on Electron Devices, 1991, 38(6):1419-1424.
[86]M Jayson, AS Kumar. FinFET technology and its advancements- A survey [J]. International Journal of Scientific & Engineering Research Volume 8, Issue 6, June-2017.
[87]Intel Press. Intel Announces New 22nm 3D Tri-gate Transistors[EB/OL].http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Announcement_Presentation.pdf
[88]Mark Bohr. 14 nm Process Technology: Opening New Horizons[EB/OL].https://www.intel.com/content/dam/www/public/us/en/documents/pdf/foundry/mark-bohr-2014-idf-presentation.pdf
[89]Carlson A. Negative and iterated spacer lithography processes for low variability and ultra-dense integration [J]. Proc Spie, 2008, 6924:125-126.
[90]ITRS.International Technology Roadmap for Semiconductors2003 Edition.
[91]ITRS. International Technology Roadmap for Semiconductors 2015 Edition.
[92]Mark Bohr. Let’s Clear Up the Node Naming Mess. Intel Press.
[93]Loubet N, Hook T, Montanini P, et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET [C]// VLSI Technology, 2017 Symposium on. IEEE, 2017: T230-T231.
[94]Colinge J P, Kranti A, Yan R, et al. Junctionless Nanowire Transistor (JNT): Properties and design guidelines[J]. Solid State Electronics, 2011, 65-66(1):33-37.
[95]Ito H. Chemical Amplification Resists for Microlithography [M]// Microlithography · Molecular Imprinting. Springer Berlin Heidelberg, 2005:37-245.
[96]Ito H. Chemically amplified resists: past, present, and future [J]. Proc Spie, 1999:2-12.
[97]Hwang S H, Lee K K, Jung J C. A novel organic bottom anti-reflective coating material for 193 nm excimer laser lithography [J]. Polymer, 2000, 41(17):6691-6694.
[98]Klar T A, Hell S W. Subdiffraction Resolution in Far-Field Fluorescence Microscopy [J]. Optics Letters, 1999, 24(14):954-956.
[99]Eric Betzig, George H. Patterson, Rachid Sougrat, O. Wolf Lindwasser, Scott Olenych, Juan S. Bonifacino, Michael W. Davids. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution [J]. Science 15 Sep 2006: Vol. 313, Issue 5793, pp. 1642-1645
[100]Rust M J, Bates M, Zhuang X. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution [J]. Nature Methods, 2006, 3(10):793.
[101]Levenson M D, Viswanathan N S, Simpson R A . Improving resolution in photolithography with a phase-shifting mask [J]. IEEE Transactions on Electron Devices, 2005, 29(12):1828-1836.
[102]TzuJeng. Optical Proximity Correction (Opc) Method for Improving Lithography Process Window [J]. 2001.
[103]Sheppard C J R , Campos J , Escalera J C , et al. Two-zone pupil filters [J]. Optics Communications, 2008, 281(5):913-922.
[104]Mark LaPedus. Intel drops 157-nm tools from lithography roadmap [EB/OL]. May. 2003, EETimes.https://www.eetimes.com/document.asp?doc_id=1175202
[105]Intel Press. Extreme Ultraviolet Lithography Conference Call [EB/OL]. Sep. 1997.https://www.intel.com/pressroom/archive/speeches/euv91197.htm
[106]Benschop J P H. EU-CLIDES: First phase completed! [C]// Emerging Lithographic Technologies IV. International Society for Optics and Photonics, 2000.
[107]Braun S, Mai H , Moss M , et al. Mo/Si Multilayers with Different Barrier Layers for Applications as Extreme Ultraviolet Mirrors [C]. // International Microprocesses & Nanotechnology Conference. IEEE, 2001.
[108]Junji Miyazaki. EUV Lithography Industrialization and future outlook. EUVL FEL Workshop[EB/OL]. December, 2016.http://pfwww.kek.jp/PEARL/EUV-FEL_Workshop/presentations/03_Miyazaki.pdf
[109]Liberman M A, De Groot J S, Toor A, et al. Physics of High-Density Z-Pinch Plasmas[M]. Springer New York, 1999.
[110]Montcalm C, Bajt S, Mirkarimi P B, et al. Multilayer reflective coatings for extreme-ultraviolet lithography [J]. Proceedings of SPIE - The International Society for Optical Engineering, 1998, 3331:42-51.
[111]Louis E, Yakshin A E, Goerts P C, et al. Reflectivity of Mo/Si multilayer systems for EUVL [C]// Emerging Lithographic Technologies III. International Society for Optics and Photonics, 1999:844-845.
[112]Rachel Courtland.EUV Lithography's prospects are brightening [EB/OL]. May. 2, 2016. https://spectrum.ieee.org/tech-talk/semiconductors/devices/euv-lithography-is-brightening-up
[113]Chris A. Mack. 100W by the end of year, a brief history of broken promises (or at least bad predictions) for EUV source power[EB/OL]. Feb. 17, 2015.http://www.lithoguru.com/scientist/essays/100WbytheEndoftheYear.ppsx
[114]Dylan McGrath. ASML Claims Major EUV Milestone [EB/OL]. July. 2017. EEtimes. https://www.eetimes.com/document.asp?doc_id=1332012
[115]Igor Fomenkov. EUV Source for High Volume Manufacturing: Performance at 250 W and Key Technologies for Power Scaling[EB/OL]. 2017 Source Workshop, Dublin, Ireland, November 7th.https://www.euvlitho.com/2017/S1.pdf
[116]Brown M H, Shillner R A. DeckScape: an experimental Web browser [C]// International World-wide Web Conference on Technology. Elsevier North-Holland, Inc. 1995.

关注南郭比特微信公众号,获取更多精彩内容


其他栏目